首页> 外文OA文献 >Evaluation of multiclass novelty detection algorithms for data streams
【2h】

Evaluation of multiclass novelty detection algorithms for data streams

机译:评估数据流的多类新颖性检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data stream mining is an emergent research area that investigates knowledge extraction from large amounts of continuously generated data, produced by non-stationary distribution. Novelty detection, the ability to identify new or previously unknown situations, is a useful ability for learning systems, especially when dealing with data streams, where concepts may appear, disappear, or evolve over time. There are several studies currently investigating the application of novelty detection techniques in data streams. However, there is no consensus regarding how to evaluate the performance of these techniques. In this study, we propose a new evaluation methodology for multiclass novelty detection in data streams able to deal with: i) unsupervised learning, which generates novelty patterns without an association with the true classes, where one class may be composed of a novelty set, ii) confusion matrix that increases over time, iii) confusion matrix with a column representing unknown examples, i.e., those not explained by the model, and iv) representation of the evaluation measures over time. We propose a new methodology to associate the novelty patterns detected by the algorithm, in an unsupervised fashion, with the true classes. Finally, we evaluate the performance of the proposed methodology through the use of known novelty detection algorithms with artificial and real data sets.
机译:数据流挖掘是一个新兴的研究领域,它研究从非平稳分布产生的大量连续生成的数据中提取知识。新颖性检测(识别新的或以前未知的情况的能力)对于学习系统是一项有用的功能,特别是在处理概念可能随时间出现,消失或发展的数据流时。当前有几项研究正在研究新颖性检测技术在数据流中的应用。但是,关于如何评估这些技术的性能尚未达成共识。在这项研究中,我们提出了一种新的评估方法,用于数据流中的多类新颖性检测,该方法可以处理:i)无监督学习,它生成新颖性模式而不与真实类相关联,其中一个类可能由新颖性集合组成, ii)随时间增加的混淆矩阵,iii)带有代表未知示例(即模型未解释的示例)的列的混淆矩阵,以及iv)随时间推移评估指标的表示。我们提出了一种新方法,以无监督的方式将算法检测到的新颖性模式与真实类相关联。最后,我们通过使用已知的带有人工和真实数据集的新颖性检测算法来评估所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号